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Abstract

A finite volume method based on a VFRoe solver to simulate the flow of compressible gas in a variable porous medium
for two-dimensional geometries is proposed. The modeling is based on the Euler system where a non-conservative term is
added to take the porosity variation into account. A detailed presentation of the scheme is given, the main point is the con-
struction of non-conservative fluxes to reproduce the non-conservation aspect of the problem. We compare the numerical
method with an exact solution of the Riemann problem and we check that the method preserves steady-state situations even
if we use a discontinuous jump for the porosity. Finally, we present two simulations involving a two-dimensional gas flow.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we present a numerical scheme for the unsteady two-dimensional Euler equations with a var-
iable porosity. The homogenization process leads to a non-conservative hyperbolic system [17] and classical
finite volume methods using a naive discretization of the non conservative term are not adequate since they
do not preserve the stationary solution (see the example proposed in [16]). The model allows to simulate
for example damping effects, gas flow cooled by a porous filter [14,19] where additional source terms would
be introduced to characterize the porous medium – fluid interactions. Another class of problems motivated
by industrial considerations is the simulation of a fast gas flow across grids. Since the obstacles are in most
cases too small to be meshed, a homogenization approach is used with empirical laws to model the interactions
between the grid and the flow.

Such a non-conservative hyperbolic problem is similar to the flow of compressible gas in a variable cross
section duct model [4,5,10], where the cross section variation is considered as a discontinuous change in the
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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material porosity. The main difficulty is the non conservative term coming from the porosity or the cross sec-
tion function. In [8], the authors give a mathematical sense to the non conservative term and several schemes,
named well balanced schemes, have been proposed to solve correctly the non-conservative contribution
[16,15]. In [20], a new scheme based on a VFRoe solver is presented, the method derives from the scheme
established in [11] for the shallow water equation. All the above schemes have been developed for one-
dimensional problems so we carry out in this article an extension for the two-dimensional case of the technique
proposed in [20]. The method uses a VFRoe solver which consists into a local linearization of Riemann
problems. Such a method is simpler to handle since we only deal with linear problems and avoid the complex
exact resolution of the Riemann problem with porosity jump [3]. An other advantage is its ability to use
complex gas law [6] but we do not consider this particular point in the present paper.

The paper is organized as follows. In Section 2, we describe the complete model of the system of governing
equations. Section 3 is devoted to the numerical method based on a VFRoe scheme. In Section 4, we determine
an exact solution to the Riemann problem in order to evaluate the behaviour of the numerical method. We
also study the scheme convergence and the steady-state preservation using a comparison between the one-
dimensional scheme, the two-dimensional scheme and the solution for stationary cases. Finally, in Section
5 we present two numerical simulations for test cases in two-dimensional problems.

2. Mathematical modeling

The two-dimensional governing equations for a gas flow in a variable porosity medium are based on the
Euler equations [17,13,21]. Since the porosity is not constant, a non-conservative term appears in the impul-
sion equations during the homogenization process and the equations write:
oU
ot
þ oF ðUÞ

ox
þ oGðUÞ

oy
¼ NCTðUÞ; ð1Þ
with the notation
U ¼

/

q/

q/u

q/v

/E

0BBBBBB@

1CCCCCCA; F ðUÞ ¼

0

q/u

q/u2 þ /P

q/uv

/uðE þ P Þ

0BBBBBB@

1CCCCCCA; ð2Þ

GðUÞ ¼

0

q/v

q/uv

q/v2 þ /P

/vðE þ PÞ

0BBBBBB@

1CCCCCCA; NCTðUÞ ¼

0

0

Po/=ox

Po/=oy

0

0BBBBBB@

1CCCCCCA; ð3Þ
where q is the gas density, (u, v) is the velocity components, P is the pressure, / is the variable porosity and E is
the total energy per unit volume given by:
E ¼ q
1

2
V 2 þ e

� �
;

with e the specific internal energy and V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

the norm velocity field. In addition, to close the system,
we use the ideal gas equation of state P(q, e) = (c � 1)qe with c > 1, where c denotes the ratio of specific heats.
The gas is assumed to be ideal, so that:
e ¼ CvT and S ¼ Cv ln
P
qc

� �
; ð4Þ
where T is the gas temperature, Cv is the specific heat at constant volume and S is the entropy.
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On the right-hand side, the non-conservative term P$/ allows to take the porosity variation into account.
Remark that the modeling is very similar to the variable cross section duct model where the cross section plays
the same role than the porosity [4,5,10].

The system has to be completed with source terms to model the mechanical effects between the porous bed
and the gas such as Darcy and Forchheimer laws and the convective heat transfer. In the sequel, we omit these
terms which do not contain any derivative and therefore do not alter the hyperbolic structure of the equations.
Moreover, they can easily be integrated using, for example, a splitting technique [19]. So, we only deal with the
major difficulty i.e. the non-conservative term.

The VFRoe scheme is based on the resolution of Riemann problems at each side of the mesh. In order to
define the generic Riemann problem, let us consider a line D passing to the origin separating the plan P ¼ R2

in two subdomains PL and PR, we denote by n the normal vector to D going from PL to PR and s a norma-
lised orthogonal vector to n. In Fig. 1, vector (n, g) represents the new coordinate system in basis (n, s) where
the coordinate n is the normal component and g is the tangential component.

For given left and right states UL and UR, the Riemann problem with initial condition U = UL in PL and
U = UR in PR gives a solution invariant to translation following g. Therefore, using the change of variables to
transform the coordinates (x, y) to the new ones (n, g) and exploiting the rotational invariance of the govern-
ing equations, we only deal with the flux F ð bU Þ, where bU is the vector of the rotated conserved variables to
solve Riemann problems [22].

In the rotated frame (n, g), the non-conservative expression of the system becomes an augmented one-
dimensional system and the system reads:
o bU
ot
þ Að bU Þ o bU

on
¼ 0; ð5Þ
with Að bU Þ the associated matrix:
Að bU Þ ¼
0 0 0 0 0

0 0 1 0 0

�P �û2 þ c�1
2
bV 2 ð3� cÞû ð1� cÞv̂ c� 1

0 �ûv̂ v̂ û 0

0 û c�1
2

V̂ 2 � H
� �

H � ðc� 1Þû2 ð1� cÞûv̂ cû

0BBBBBB@

1CCCCCCA;
where û and v̂ stand for the normal and tangential velocity, respectively, and the specific enthalpy H is defined
by:
H ¼ E þ P
q
¼ P

q
þ eþ 1

2
bV 2. ð6Þ
The matrix Að bU Þ admits fives eigenvalues k0 = 0, k1 ¼ û� c, k2 ¼ k3 ¼ û, k4 ¼ ûþ c where c is the speed of
sound given by:
D

n

τ
η ξ

y

x
PR

PL

Fig. 1. New coordinate system for a general intercell boundary in two-dimensional domain.
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c2 ¼ cP
q
¼ ðc� 1Þ H � 1

2
bV 2

� �
. ð7Þ
The corresponding right eigenvectors for linearly degenerate fields (k0, k2, k3) write:
R0 ¼

c2 � û2

cP

0

cP v̂

P H � ðc�1Þ
2
bV 2 þ ðc� 1Þv̂2

h i

0BBBBBBB@
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1
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v̂
1
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0

0

0

1
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0BBBBBB@

1CCCCCCA;
and the right eigenvectors for genuinely non-degenerate fields (k1, k4) are:
R1 ¼

0

1

û� c

v̂

H � ûc

0BBBBBB@

1CCCCCCA; R4 ¼

0

1

ûþ c

v̂

H þ ûc

0BBBBBB@

1CCCCCCA.
A critical situation occurs when k1 or k4 coincides with k0 = 0 leading to a parabolic degenerated system since
the eigenvectors do not constitute a basis of R5 (see [3], Chapter 2). This particular situation induces numerical
difficulties since we can not use the eigenvectors as a basis when û ¼ c or û ¼ �c.

3. The numerical method

To deal with the numerical approximation, we introduce the following ingredients. Th is a discretization of
a two-dimensional polygonal bounded domain X with triangles Si, i = 1, . . ., I, where I is the number of mesh
elements. For a given i, m(i) represents the index set of the common edge elements Sj 2Th, j 2 m(i), where
Li;j ¼ �Sj \ �Si stands for the common side. In the sequel, jLijj stands for the length of the side whereas jSij is
the area of the cell i. For a given side Li,j, ni,j represents the outwards normal of Si pointing to Sj and
nj,i = �ni,j. The sequence (tn)n defines a time discretization of [0, T] with tn+1 = tn + Dt and Un

i stands for an
approximation of the mean value of U at time tn on the element Si.

We consider a general finite volume scheme described in [22] in the context of the Euler equations:
Unþ1
i ¼ U n

i �
Dt
jSij

X
j2mðiÞ
jLi;jjFðUi;U j; ni;jÞ; ð8Þ
where F is the numerical flux on the corresponding cell boundary in the rotated basis (ni, j,si,j).
To solve numerically the non-conservative problem, we introduce a VFRoe method, initially proposed by

[12,9] for the shallow water problem. The technique consists in a linearization of the Riemann problem at each
interface Li,j using an intermediate state eW to evaluate the matrix A. The particular point is that the numerical
flux has to be non-conservative to take the term P$/ into account i.e.
FðUi;U j; ni;jÞ 6¼FðU j;Ui; nj;iÞ.

To this end, we consider the solution W of the new linearized problem:
oW
ot þ Að eW Þ oW

on ¼ 0 for ðn; gÞ 2 R2; t > 0;

W ðn; 0Þ ¼
bU L; n < 0; g 2 R;bU R; n > 0; g 2 R;

(
ð9Þ
where eW ¼ eW ð bU L; bU RÞ is defined in the sequel.
In the conservative case, F is deduced from the intermediate state W(0, t) taking F(W(0, t)) as numerical

conservative flux. In the non-conservative case, we build the numerical flux from the conservative flux function
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F and the intermediate states W(0�, t) and W(0+, t) situated on the left and on the right of the line x = 0. The
non-conservative term does not explicitly appear in the flux expression but implicitly in the intermediate state
evaluation [11].

Note that our method is different from the one proposed by [1,4] since the authors first discretize the con-
servative part of the operator and deduce a discretization of the non-conservative term using a steady-state
constraint: a uniform constant pressure and velocity flow remains constant during its time evolution.

3.1. The VFRoe scheme

For a given average eW defined from bU L and bU R, the associated right eigenvectors eRk ¼ Rkð eW Þ, k = 0, . . ., 4
define a basis of R5 if ~u2 6¼ ~c2 and we have the decomposition
DW ¼ bU R � bU L ¼
X4

k¼0

eak
fRk . ð10Þ
Skipping the tilde for the sake of simplicity, coefficients ak, k = 0, . . ., 4 have to satisfy the following relations:
D0 ¼ /R � /L ¼ a0ðc2 � u2Þ; ð11Þ
D1 ¼ ðq/ÞR � ðq/ÞL ¼ a0cP þ a1 þ a2 þ a4; ð12Þ
D2 ¼ ðq/uÞR � ðq/uÞL ¼ a1ðu� cÞ þ a2uþ a4ðuþ cÞ; ð13Þ
D3 ¼ ðq/vÞR � ðq/vÞL ¼ a0cPvþ a1vþ a2vþ a3 þ a4v; ð14Þ

D4 ¼ ð/EÞR � ð/EÞL ¼ a0 P H � c� 1

2
V 2 þ ðc� 1Þv2

� �� �
ð15Þ

þ a1ðH � ucÞ þ a2

1

2
V 2 þ a3vþ a4ðH þ ucÞ.
After calculation using Eqs. (14), (12) and (11), we obtain:
a0 ¼
D0

c2 � u2
and a3 ¼ D3 � vD1. ð16Þ
Then one solves Eqs. (12), (13) and (15) to provide a1, a2 and a4. Computationally, it is convenient to arrange
the solution as follows:
a1 ¼ a4 �
1

c
ðD2 � uD1Þ; ð17Þ

a2 ¼ D1 � a1 � a4; ð18Þ

a4 ¼
1

2

c� 1

c2
D4 � uD2 þ u2 � 1

2
V 2

� �
D1

� �
þ 1

c
D2 � uD1

� �	 

; ð19Þ
where
D1 ¼ D1 � a0cP ¼ a1 þ a2 þ a4;

D2 ¼ D2 ¼ a1ðu� cÞ þ a2uþ a4ðuþ cÞ;

D4 ¼ D4 � a3v� a0 P H � c� 1

2
V 2 þ ðc� 1Þv2

� �� �
¼ a1ðH � ucÞ þ a2

1

2
V 2 þ a4ðH þ ucÞ.
Note that the decomposition is not a priori defined when the gas velocity is sonic (i.e. ~u2 ¼ ~c2) and D/ 6¼ 0. The
five eigenvectors do not constitute a basis of R5 and the problem is no longer hyperbolic. Consequently, the
proposed method is not adapted when a sonic point appears at point where the porosity changes. The exact
solution W ¼ W iþ1=2ðx=t; bU L; bU RÞ of the linearized problem (9) is defined by [11]:
W ððx=tÞ�; bU L; bU RÞ ¼ bU L þ
X
x
t>

~kj

~aj
~Rj; ð20Þ
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W ððx=tÞþ; bU L; bU RÞ ¼ bU R �
X
x
t<

~kj

~aj
eRj. ð21Þ
Since k0 = 0 is an eigenvalue of Að eW Þ, we consider two states on each side of n = 0, depending on the other
eigenvalues sign:
W ð0�; bU L; bU RÞ ¼

bU L if ek1 > 0;bU L þ ~a1
eR1 if ~k1 < 0 < ~k2 ¼ ~k3;bU R � ~a0
eR0 � ~a4

eR4 if ~k2 ¼ ~k3 < 0 < ~k4;bU R � ~a0
eR0 if ~k4 < 0

8>>><>>>: ð22Þ
and
W ð0þ; bU L; bU RÞ ¼ W ð0�; bU L; bU RÞ þ ~a0
eR0. ð23Þ
When bU L ¼ bU i and bU R ¼ bU j, the numerical flux function is given by:
Fð bU i; bU j; ni;jÞ ¼ F ðW ð0�; bU i; bU jÞÞ.

It is important to note that Fð bU i; bU j; ni;jÞ 6¼Fð bU j; bU i; nj;iÞ since W ð0þ; bU i; bU jÞ 6¼ W ð0þ; bU j; bU iÞ ¼
W ð0�; bU i; bU jÞ.

To get a complete numerical scheme, one has to set the local average eW . We propose the following expres-
sions defined from four independent variables:
� eW ¼ eW ð bU L; bU RÞ such that
1

~q
¼ 1=qL þ 1=qR

2
; ~u ¼ ûL þ ûR

2
; ~v ¼ bvL þ bvR

2
; eP ¼ P L þ P R

2
. ð24Þ
Note that other variables are not obtained by averaging but are deduced from the primitive averaging values
to satisfy the constitutive laws.

4. Numerical tests

4.1. Exact solution of the Riemann problem

The shock-tube in a porous medium described in Fig. 2 involves the gas flow in which the porosity is dif-
ferent in each part of the chamber.

The exact solution of the problem described in Fig. 2 for several choices of initial conditions was presented
in [4,18]. Ref. [4] have shown that in some situations there is no uniqueness of the entropy solution to the
Riemann problem. On the other hand, if the configuration of the wave curves is fixed, the entropy solution
is unique, so here, we determine a solution to the Riemann problem, the left state is given and we fix the
configuration of the wave curves.

4.1.1. First configuration

To compute the exact solution of the Riemann problem, we proceed as follows (see [3]): we prescribe a left
state and choose the following configuration (see Fig. 3): 1-rarefaction wave, 0-stationary contact wave,
PR Ru RφRρPL Lu Lρ Lφ

0.5 m

1 m

Porosity jump{Initial discontinuity

Fig. 2. Schematic description of the shock-tube in porous medium.



Fig. 3. Two configurations of wave curves of the Riemann problem with a porosity jump located at x = 0.
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2-contact discontinuity wave, 3-shock wave. We deduce the other states using the Riemann invariants and the
Rankine–Hugoniot conditions. For the first configuration, we take PL = 4 · 105 Pa, qL = 4.0 kg m�3, uL =
0.0 m s�1 and /L = 1.0. We compute the state U1 using the Riemann invariants since we impose a rarefaction
wave prescribing u1 = 80.0 m s�1. We then deduce P1, q1 and c1. To evaluate the transition across the porous
discontinuity, we use the Riemann invariants corresponding to the eigenvalue k0 = 0 i.e.:
Table
Data f

UL

U1

U0

U2

UR
/qu ¼ const:; ð25Þ

Si ¼
P
qc
¼ const:; ð26Þ

u2

2
þ c2

c� 1
¼ const:; ð27Þ
where Si is the isentrope. Prescribing /R = 0.4, we evaluate the other components of the state U0 using a
Newton algorithm to solve numerically Eqs. (25)–(27). To compute the state U2, we use the Riemann invar-
iants u2 = u0 and P2 = P0 and we impose q2 = 1.0725q0. At last, we compute the right state using the Rankine–
Hugoniot conditions choosing PR = 0.3546 P2. Table 1 sums up all the states.

In order to validate the two-dimensional model, we consider a rectangular domain [0, 1] · [0,0.1] discretized
with a unstructured mesh of 51,985 elements. Computations have been performed using the finite volume
library developed by [23]. The initial conditions of the 2D simulation are the left state UL and the right state
UR situated on each side of the initial discontinuity located at x = 0.5 m. Moreover, we let vL = 0 m s�1 and
vR = 0 m s�1 to obtain a pure one-dimensional problem.

Fig. 4 represents the numerical results of density, pressure, x-velocity and entropy distributions and the
exact solution to the Riemann problem. The solutions correctly predict the jump condition at x = 0.5 m
and are in good agreement with the exact solution since they preserve a constant entropy across the porosity
jump. Note that the contact discontinuity is extensively smeared, which is typical for a first-order scheme.

4.1.2. Second configuration

To compute the Riemann problem solution, we proceed in the same way. We choose the left state UL with
PL = 1 · 105 Pa, qL = 4.2 kg m�3, uL = 200.0 m s�1 and /L = 1.0. We use the second configuration described
in Fig. 3: 1-shock wave, 0-stationary wave, 2-contact discontinuity wave, 3-shock wave. We list in Table 2 the
intermediate states.
1
or the first Riemann problem

/ q (kg m�3) u (m s�1) c (m s�1) P (Pa)

1.0 4.0 0.0 374.16 4.05

1.0 3.21 80.0 358.16 2.95 · 105

0.4 2.54 253.11 341.69 2.12 · 105

0.4 2.72 253.11 329.94 2.12 · 105

0.4 1.34 25.56 280.05 7.5 · 104
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Fig. 4. Exact solution (solid line) and numerical results for the VFRoe scheme (symbol �) at time t = 8.02 · 10�4 s.

Table 2
Data for the second Riemann problem

/ q (kg m�3) u (m s�1) c (m s�1) P (Pa)

UL 1.0 4.2 200.0 182.57 1 · 105

U1 1.0 8.87 41.69 217.64 3.0 · 105

U0 0.4 7.74 119.36 211.82 2.48 · 105

U2 0.4 6.19 119.36 236.82 2.48 · 105

UR 0.4 1.62 �199.07 146.22 2.48 · 104
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Fig. 5 compares the exact solution and the numerical results obtained by the VFRoe scheme. In this con-
figuration, the numerical results suit well with the exact solution. However, we observe small oscillations in the
vicinity of the 1-shock and of the 3-shock which are transported during the simulation.

4.2. Convergence tests

To check the convergence of the numerical scheme, we perform a shock tube simulation in porous medium
using several spatial cell sizes and compare the different numerical solutions with the exact solution defined in
Section 4.1.1. To this end, we consider the above two-dimensional spatial domain and the initial conditions are
analogous to Section 4.1.1. The mesh characteristics are given in Table 3 where h is the average space step and
hmin the minimum space step used in the computation of the time step restricted by the CFL condition
Dtmaxjkij 6 hmin.

Fig. 6 presents the density function in the x-direction for the exact solution and the numerical results for the
four meshes. We observe a good convergence of the numerical solutions to the exact solution.
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Fig. 5. Exact solution (solid line) and numerical results for the VFRoe scheme (symbol �) at time t = 1.984 · 10�3 s.

Table 3
Mesh characteristics for a [0,1] · [0,0.1] domain

Mesh h (m) hmin (m) Cell numbers

1 1 · 10�2 6.98 · 10�3 2119
2 5 · 10�3 3.34 · 10�3 8195
3 2.5 · 10�3 1.62 · 10�3 33,025
4 1.25 · 10�3 8.20 · 10�4 132,843
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4.3. Stationary solution

One of the major challenges for non-conservative hyperbolic problems is to produce numerical schemes able
to maintain the stationary solution [1]. For a one-dimensional geometry, we have established in [20] that the
stationary case with regular porosity (named the stationary model) reduces to ordinary differential equations:
q/u ¼ D1;

c
ðc� 1Þ P/uþ 1

2
D1u2 ¼ D2;

du
dx
¼ cPu

D1u� c/P
d/
dx
;

ð28Þ
where D1 represents the constant mass flow rate and D2 is a constant.
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Fig. 6. Density distributions for the four meshes and the exact solution of the first configuration.
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Furthermore, for a given inlet Dirichlet condition at point x = 0, we get a numerical approximation of the
stationary problem solution on the whole domain, providing, in particular, the outlet condition at x = 1. We
then assume that any theoretical non-stationary solution with the same inlet and outlet boundary conditions
converges asymptotically to the stationary solution whatever the initial condition is. For the two-dimensional
situation, we choose the initial condition and the boundary conditions such that v = 0 and then the problem
turns into a one-dimensional problem following (0x). We state homogeneous Neumann condition for the
upper and lower boundaries (y = 0 and y = 0.1) and set inlet and outlet conditions at x = 0 and x = 1, respec-
tively with v = 0 everywhere. The goal of this section is to compare the stationary solutions computed using
the ordinary differential equation (28) and the VFRoe scheme for the one-dimensional problem as in [20] and
the VFRoe scheme in two space dimensions.
4.3.1. Regular porosity function

In this example, we have chosen the continuous porosity function:
/ðxÞ ¼ 2þ sinð3pxÞ
3

; ð29Þ
and we impose inlet boundary conditions qinlet = 3 kg m�3, Pinlet = 106 Pa, vinlet = 0 m s�1 and uinlet = 100 m s�1.
Fig. 7 shows the pressure and velocity distributions following the line y = 0.05 m of the solution computed

with the VFRoe scheme. The curves correspond to the stationary solution obtained by solving the differential
equation (28) using a fourth order Runge–Kutta method.

4.3.2. Discontinuous porosity function

We consider the situation where the porosity decreases abruptly from 1 to 0.3 at point x = 0.5 m for a
steady state configuration. To test the numerical method, we smooth the discontinuity using a linear connec-
tion between / = 1 to / = 0.3 characterized by the interval length d where the transition operates [16,7]. We
study the behaviour of the numerical solution when d becomes small (see Fig. 8). The extreme situation occurs
when the transition takes place in only one element.

The stationary solution is obtained by imposing inlet boundary conditions qinlet = 3 kg m�3, Pinlet =
5 · 105 Pa and uinlet = 50 m s�1 solving the ordinary differential Eq. (28) with a fourth order Runge–Kutta
method on a 1000 regular cells mesh. With such a mesh, the regularization of the porosity occurs at least
on 50 cells (passage of / = 1 to / = 0.3 with d = 0.05 m). We also compute the solution with the non-
stationary problem using the 1D-model presented in [20] and the 2D-model. For the two-dimensional prob-
lem, we use a Delaunay regular mesh of 8195 cells such that the hmin parameter is greater than d leading to a
discontinuous transition from the numerical point of view. We also use the same boundary condition Cinlet on
the left side and the condition Coutlet = (qoutlet, uoutlet, Poutlet) given by the stationary solution on the right side.
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Fig. 8. Treatment of the porosity discontinuity with a regularized transition.
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Fig. 7. Comparison of the pressure and velocity distributions between the stationary solution, numerical solutions obtained by the 1D and
2D models.
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We impose symmetrical conditions for v on the top and bottom side to provide a solution invariant following
(Oy).

We present in Fig. 9 the pressure and the velocity obtained by the analytic solution and the numerical solu-
tion for the 1D and 2D models. We observe a good agreement between the simulations and the stationary
solution, we note for the 1D and 2D models a slight difference of the left and right pressures which decreases
when the mesh is refined.

5. Two-dimensional numerical results and discussion

We present in this section two tests involving real two-dimensional problems in the [0, 1] · [0,1] square
geometry. The first test case is a two-dimensional simulation of a shock crossing a porous ball surrounded
by air, this problem is analogous to the test case used in bifluid models presented in [2]. In the second example,
we simulate a gas flow around a porous step (forward facing step), this test case is connected with the test case
often called Mach 3 wind tunnel with a step (see [24]).

5.1. Shock/porous medium interaction

We consider a shock tube problem simulating the shock wave interaction with a spherical domain contain-
ing a porous medium. The shock travels from the left to the right of the domain at a constant speed before it
hits the porous ball. In front of the shock, the porous ball of radius r = 0.15 m and center at (x0, y0) =
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Fig. 9. Comparison of the pressure and velocity distributions between the stationary solution and numerical solutions obtained by the 1D
and 2D models.

Fig. 10. Two-dimensional two-phase shock tube geometry with a porous ball.
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(0.75, 0.5) is in equilibrium with the surrounding air (i.e. same pressure and same density, see Fig. 10). The
domain is a Lx = Ly = 1 m square discretized with a unstructured mesh of 5098 cells.

A diaphragm is initially located at xc = 0.4 m allowing to generate a shock wave, the initial conditions are
summarized in Table 4.
Table 4
Initial state of the shock tube with a spherical porous medium

Location q (kg m�3) P (Pa) u = v (m s�1) /

Air 5.8 5 · 105 0 1.0
Air 1.16 1 · 105 0 1.0
Porous medium 1.16 1 · 105 0 0.4



Fig. 11. Pressure contours at time t = 1.2 ms after the shock wave impact into a circular porous medium.
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At the initial time the diaphragm rupture induces a shock wave which propagates toward the spherical por-
ous medium. A part of the shock is transmitted to the porous medium where the gas flow velocity increases
while a reflected wave goes back to the diaphragm. Readily in Fig. 11, circular pressure waves appear once the
porous medium is reached by the shock. We observe a good symmetry of the numerical solution with respect
to the line y = 0.5 m.
Fig. 12. Two-dimensional forward facing step geometry.
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5.2. Forward facing step problem

In this simulation, we consider a shock wave crossing a porous step described in Fig. 12. We use a square
domain with a 20,668 cells mesh for the discretization. A porous medium step of Lxp = 0.6 m length and
Lyp = 0.3 m height is located at [0.4,1] · [0,0.3] surrounded by atmospheric air and the diaphragm is located
at xc = 0.2 m. The initial conditions are the same than the previous test.
Fig. 13. Density contours for the forward facing step problem at time t = 1.4 ms.

Fig. 14. Mach number contours for the forward facing step problem at time t = 1.5 ms.
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Fig. 13 shows the density isovalues for the forward facing step problem. In the upper part, we clearly distin-
guish from right to left the shock wave, the contact discontinuity and the rarefaction wave. In the lower part, a
more complex situation takes place front of the porous medium where the gas is compressed. We note that the
transmitted wave is slightly faster in the porous medium than in air and the reflected wave is clearly visible.

Fig. 14 shows the Mach number isovalues. The higher gas velocity is located at the step corner where the
gas velocity is close to the sound velocity inside the porous medium. This test reaches the limits of the numer-
ical method because at the porosity jump: a 1-rarefaction wave is generated and the last 1-characteristic speed
is close to zero (u � c), i.e. the 1-rarefaction wave touches the stationary contact from the right leading to a
parabolic degeneracy.

6. Conclusion

We have proposed a first order two-dimensional finite volume scheme for compressible flow in variable
porosity medium. The flux approximation is based on a VFRoe solver allowing to consider more complex
constitutive laws for the gas. Exact solutions have been directly compared with solutions generated by the
non-conservative numerical method and we obtain a good agreement with the correct solution. Numerical
experiments show that the scheme preserves the steady-state even if a porosity discontinuity occurs. Numerical
simulations for more complex situations have also been presented to experiment the numerical scheme with
real two-dimensional problems. The main point is that the scheme manages to handle discontinuous porosity
function which is of practical interest like the porous filter [19]. The negative point is that the scheme can not
hold sonic situations where the porosity changes since the eigenvector basis degenerates.
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